Correlations of capture, transport, and nutrition with spinal deformities in sandtiger sharks, Carcharias taurus, in public aquaria.
نویسندگان
چکیده
A number of captive sandtiger sharks (Carcharias taurus) in public aquaria have developed spinal deformities over the past decade, ranging in severity from mild curvature to spinal fracture and severe subluxation. To determine the frequency and etiologic basis of this disease, U.S. public aquaria participated in a two-stage epidemiologic study of resident sharks: 1) a history and husbandry survey and 2) hematology, clinical chemistry, and radiography conducted during health exams. Eighteen aquaria submitted data, samples, or both from 73 specimens, including 19 affected sharks (26%). Sharks caught off the Rhode Island coast or by pound net were smaller at capture and demonstrated a higher prevalence of deformity than did larger sharks caught from other areas via hook and line. Relative to healthy sharks, affected sharks were deficient in zinc, potassium, and vitamins C and E. Capture and transport results lead to two likely etiologic hypotheses: 1) that the pound-net capture process induces spinal trauma that becomes exacerbated over time in aquarium environments or 2) that small (and presumably young) sharks caught by pound net are exposed to disease-promoting conditions (including diet or habitat deficiencies) in aquaria during the critical growth phase of their life history. The last hypothesis is further supported by nutrient deficiencies among affected sharks documented in this study; potassium, zinc, and vitamin C play critical roles in proper cartilage-collagen development and maintenance. These correlative findings indicate that public aquaria give careful consideration to choice of collection methods and size at capture and supplement diets to provide nutrients required for proper development and maintenance of cartilaginous tissue.
منابع مشابه
Mechanical properties of sand tiger shark (Carcharias taurus) vertebrae in relation to spinal deformity.
Approximately 35% of sand tiger sharks (Carcharias taurus) in public aquaria exhibit spinal deformities ranging from compressed vertebrae and loss of intervertebral space to dislocated spines with vertebral degeneration and massive spondylosis caused by excessive mineralization both within vertebrae and outside the notochordal sheath. To identify the mechanical basis of these deformities, verte...
متن کاملMechanics of biting in great white and sandtiger sharks.
Although a strong correlation between jaw mechanics and prey selection has been demonstrated in bony fishes (Osteichthyes), how jaw mechanics influence feeding performance in cartilaginous fishes (Chondrichthyes) remains unknown. Hence, tooth shape has been regarded as a primary predictor of feeding behavior in sharks. Here we apply Finite Element Analysis (FEA) to examine form and function in ...
متن کاملThe behavioural and genetic mating system of the sand tiger shark, Carcharias taurus, an intrauterine cannibal.
Sand tiger sharks (Carcharias taurus) have an unusual mode of reproduction, whereby the first embryos in each of the paired uteri to reach a certain size ('hatchlings') consume all of their smaller siblings during gestation ('embryonic cannibalism' or EC). If females commonly mate with multiple males ('behavioural polyandry') then litters could initially have multiple sires. It is possible, how...
متن کاملEcological impact of the end-Cretaceous extinction on lamniform sharks
Lamniform sharks are apex marine predators undergoing dramatic local and regional decline worldwide, with consequences for marine ecosystems that are difficult to predict. Through their long history, lamniform sharks have faced widespread extinction, and understanding those 'natural experiments' may help constrain predictions, placing the current crisis in evolutionary context. Here we show, us...
متن کاملGlobal versus local causes and health implications of high mercury concentrations in sharks from the east coast of South Africa.
Conservation concern regarding the overharvest of global shark populations for meat and fin consumption largely surrounds documented deleterious ecosystem effects, but may be further supported by improved knowledge of possibly high levels in their edible tissues (particularly meat) of the neurotoxin, methylmercury (CH3Hg). For many regions, however, little data exist on shark tissue Hg concentr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians
دوره 43 4 شماره
صفحات -
تاریخ انتشار 2012